HomePostsWhat is ENS ?ScienceContact
Facebook group

How to rebuild the nasal cavity?

I try to know how to rebuild the nasal cavity after an inferior turbinectomy, where to add volume in priority ?

Some ENTs think that the head of the turbinates is the most important because it is where it's easiest to add resistance. And they often think that nasal resistance is the most important parameter in the ENS.

In this study, Dr Nayak and others researchers/doctors prove that it is possible to reduce significantly the symptoms of ENS without adding resistance. He implanted cartilage in the inferior meatus (the place of the inferior turbinate) and they have seen with CFD that the airflow is better redistributed between middle meatus and inferior meatus.

This other study shows that without inferior turbinate the most part of the airflow is redirected in the middle turbinate compared to healthy subjects. And they found a correlation between peak wall shear stress in the inferior meatus and airflow feeling sensation. Peak wall shear stress is the quantity of friction of air on the mucosa.

Airflow distribution, source: Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients

What we can say with all of this data? I think that it is useless and may be harmful to just add volume to the beginning of the nasal cavity ( head of turbinates) because that will increase wall shear stress just at the beginning of the nasal cavity and not all along. And that will not solve the redistribution airflow problem. Without adding volume all along the inferior meatus the airflow will stay in the middle meatus and the sensation will remain bad.

The solution is to rebuild the nasal cavity like before turbinectomy, with the same distribution of the volume. It can be with adding volume in the remaining inferior turbinate if it is possible or adding cartilage on the lateral wall. But you have understood it is very important to add volume not just at the beginning of the nasal cavity but all along like a healthy nose. In the graph below, we can see that a healthy nose has a stable cross-sectional area all along the nasal cavity, but of course, it is not the case with an inferior turbinectomy. The reconstruction of the nasal cavity must tend towards these values.

Source: Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients

Recent Posts

First CFD with Flowgy

Introduction First of all, what is Flowgy? Flowgy is a software dedicated for CFD of the nasal cavity with tools for virtual surgery. In this article, I will compare the results that I got with my industrial software (Onshape and Simscale) and the results with Flowgy. I would like to thank Pr Manuel Burgos for […]

Read More
Virtual implant, first round

Introduction As planned I designed virtual implants in my nasal cavity in order to improve airflow distribution and decrease cross-sectional area to tend toward a healthy nose. Virtual implants placement In red are the virtual implants that I designed, you can see that I added a lateral wall implant behind the existing one on the […]

Read More
CFD simulation of my nasal cavity

Introduction Finally, I was able to make a 3d model of my nasal cavity usable with a CFD software. For those who don't know what is CFD, it just mean Computational Fluid Dynamics which is the study of fluids, in our case the air.I took 15 l/min for the flow rate and I did not […]

Read More

Leave a Reply

Your email address will not be published.

This website is created by Aurélien RUMIANO
facebook-squarefacebook